

FACULTY OF ENGINEERING & TECHNOLOGY

First Year Master of Technology

Semester I

Course Code: 102310101

Course Title: Distributed Systems

Type of Course: Program Elective II

Course Objectives: Students will learn basic concepts and paradigms of distributed systems. Students will learn how to combine computational power of multiple computers to solve complex computational problems.

Teaching & Examination Scheme:

Contact hours per week			Course	Exam	ination Ma	Marks (Maximum / Passing)		
Locturo	e Tutorial	Practical	Credits	Inte	rnal	Exte	rnal	Total
Lecture				Theory	J/V/P*	Theory	J/V/P*	Total
3	0	2	4	30 / 15	20 / 10	70 / 35	30 / 15	150 / 75

* **J**: Jury; **V**: Viva; **P**: Practical

Detailed Syllabus:

Sr.	Contents				Hours		
1	Introduction to Distributed Computing Systems:						
	Evolution of distributed computing systems, Distributed computing systems						
	models, issues in the design of distributed operating systems.						
2	Inter-process Communication in Distributed Systems:						6
	Message passing, synchronization, buffering, failure handling, group						
	communication.						
3	Remote Procedure Calls:6					6	
	Remote Procedure Call (RPC) models, transparency of RPC, RPC messages,						
	marshaling arguments and results, exception handling, lightweight RPC.						
4	Distributed Shared Memory: 7						
	General architecture of Distributed Shared Memory (DSM), granularity,						
	replacement strategies, thrashing.						
5	Distributed Process Management: 7						
	Synchronization – clock synchronization, event ordering, mutual exclusion;						
	election algorithm, process migration, threads.						
6	Distributed File System: 7				7		
	File accessing models, file-sharing semantics, file-caching semantic, case-study:						
	Network file systems.						
Sugge	sted Sp	ecifica	tion tal	ole wit	h Mark	s (Theory) (Revised Bloom's Taxonomy):	
Ι	Distribu	ition of	f Theor	y Mark	(S	R: Remembering; U: Understanding; A: App	olication,
R	U	Α	Ν	Ε	С	N: Analyze; E: Evaluate; C: Create	
20%	30%	30%	10%	5%	5%		

Page 1 of 2

Opp. Shastri Maidan, Beside BVM College, Vallabh Vidyanagar, Dist: Anand, Gujarat - 388120 (O): 02692-238001 | Email: adminoffice@cvmu.edu.in | www.cvmu.edu.in

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

1	P.K. Sinha, Distributed Operating Systems, Concept and Design, Prentice Hall of India, 1997.
2	A.S Tannenbaum, M.V. Steen, Distributed Systems, Principles and Paradigms, Prentice Hall of
	India, 2002. 3. Vijay K. Garg, Elements of Distributed Computing Wiley – IEEE 2002.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	Understand the Evolution and Issues of Distributed system	15
CO-2	Understand the concepts of Inter process communication and Remote	30
	Procedure Call in Distributed Environment.	
CO-3	Understand the concept of Distributed process management.	30
CO-4	Understand the concept of Distributed File System	25

List of Practicals / Tutorials:

1	Write a program to implement hello world service using RMI
2	Write a program to implement calculator using RMI
3	Write a program to implement time service using RMI
4	Write a program to implement hello world service using RPC
5	Write a program to implement date service using RPC
6	Write a program to implement Echo SOCKET in JAVA
7	Write a program to implement Echo server using RPCGEN
8	Write a program to implement producer-consumer concept using THREAD
9	Write a program to find the length of string using THREAD
10	Experiments on Hadoop Distributed File System
11	Infinite Sequence, Infinite Series, Geometric Series, Telescoping Series, The nth term test for
	a Divergent Series. The Integral Test, Comparison Tests, D Alembert's Ratio Test and Cauchy's
	Root Test
12	Alternating Series, Absolute and Conditional Convergence, Power Series and Convergence,
	The Radius and Interval of Convergence of a Power Series

Supplementary learning Material:				
1	NPTEL Distributed Computing Systems : https://nptel.ac.in/courses/106/106/106106107/			
2	NPTEL Distributed Systems: https://nptel.ac.in/courses/106/106/106106168/			

Curriculum Revision:			
Version:	1		
Drafted on (Month-Year):	Apr-20		
Last Reviewed on (Month-Year):	Jul-20		
Next Review on (Month-Year):	Apr-22		

Page 2 of 2

Opp. Shastri Maidan, Beside BVM College, Vallabh Vidyanagar, Dist: Anand, Gujarat - 388120 (O): 02692-238001 | Email: adminoffice@cvmu.edu.in | www.cvmu.edu.in